Erlang/OTP

VOLUME |
A Concurrent World

w4

MANUEL ANGEL RUBIO JIMENEZ

7)Y

Erlang/OTP

Volume I: A Concurrent World
Manuel Angel Rubio Jiménez

Translated by
Ana Maria Rubio Jiménez

Reviewed by

Ayanda Dube

Erlang/OTP

Volume I: A Concurrent World
Manuel Angel Rubio Jiménez

Translated by
Ana Maria Rubio Jiménez

Reviewed by

Ayanda Dube

Abstract

The Erlang programming language was born around the year 1986 in Ericsson
laboratories by the hand of Joe Armstrong. It is a functional language based on
Prolog, fault-tolerant, and oriented to real-time work and concurrency, which
provides certain advantages in terms of algorithm declaration.

Like most functional languages, Erlang requires an analysis of the problem and
a way to design the solution differently than it would be done in an imperative
programming language. It suggests a better and more efficient way to carry it
out. Itis based on a syntax that is more mathematical than programmatic, so it
tends more to solve problems than to order and execute orders.

All this makes Erlang a very appropriate language for the programming of
critical mission elements, both at the server level and at the desktop level, and
even for the development of embedded systems.

This book contains a compendium of information about what language is, how
it covers the needs for which it was created, how to get the most out of its
way of performing tasks and its orientation to the audience. It is a review from
the beginning about how to program in a functional and concurrent way in a
distributed and fault tolerant environment.

ISBN 978-84-945523-7-3

L SLoEle

788494 " 552373
Erlang/OTP, Volume I: A Concurrent World by Manuel Angel Rubio Jiménez"
is under a Creative Commons License Attribution-NonCommercial-ShareAlike
3.0 Unportedz.

* http://erlang-otp.es/
2 http://creativecommons.org/licenses/by-nc-sa/3.0/

http://erlang-otp.es/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://erlang-otp.es/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Chapter1.What you should
know about Erlang

Software for a concurrent world.
—Joe Armstrong

Erlang is becoming an environment and a fashionable language. The
growing existence of companies oriented to the provision of Internet
services with a high volume of transactions (such as game networking
or mobile messaging and chat systems) means that jobs like these
are proliferating in different countries such as the United States, the
United Kingdom and Sweden, where professionals in this language are
required. There is an imperative need to develop environments with the
characteristics of the Erlang machine and the development methodology
provided by OTP.

In this chapter we introduce the concept of Erlang and OTP: its meaning,
characteristics and history. The information in this first chapter is
complimented by the sources that have motivated it and provides
accurate information on where each section has been extracted.

1.What is Erlang?

To understand what Erlang is, we must comprehend that it is a complete
development platform or environment. Erlang not only provides a
compiler for the source code, but also has a collection of tools and a
virtual machine (called BEAM) to run compiled code. Therefore, Erlang
may be viewed from two perspectives:

Erlang as a language

There are many discussions on whether Erlang is a functional
programming language or not. On inception, it is understood that
it is, although as you progress with it, you notice some elements
that make it deviate from this pure classification. Therefore, Erlang
could better be classified as a hybrid language, having elements of
a functional type, an imperative type, and even some features that
allow some orientation to objects, although not entirely complete.

The best classification of Erlang, at least from my point of view is
saying it is a language oriented to concurrency. Erlang has some
great native features tailored for distributed, parallel (concurrent)
programming as well as inherent mechanisms for ensuring fault
tolerance. It was designed from the beginning to be executed in an
uninterrupted manner. This means you can change the code of your

What you should
know about Erlang

applications without actually stopping or interrupting its execution.
Later we will explain more concretely how all of this works.

BEAM or Erlang as execution environment

As we have already mentioned, Erlang is a development platform
that provides not only a compiler, but also a virtual machine for
execution. Unlike other interpreted languages such as Python, Perl,
PHP or Ruby, Erlang is compiled and its virtual machine provides an
important layer of abstraction that gives it the ability to manage and
distribute processes between nodes in a completely transparent
manner (without the use of specific libraries). The term node is
commonly used to refer to a named instance of the Erlang virtual
machine. More on this later.

The virtual machine (or node) on which Erlang's compiled code
is executed on, providing all the characteristics of distribution
and communication of processes, is also a machine that interprets
machine code® which, actually has nothing to do with the Erlang
language itself at that level. This has allowed a proliferation of
languages that use the Erlang virtual machine but not the language
itself, such as: Reia, Elixir, Efene, Joxa, Alpaca or LFE.

Erlang was the proprietary code until 1998, when it was ceded as
open source to the community. It was created initially by Ericsson,
more specifically by Joe Armstrong, although not only him alone, with
significant involvements of Robert Virding and Mike Williams.

It was given the name Agnus Kraup Erlang. Although it is also assumed
that its name is an abbreviation of ERicsson LANGuage, from its intensive
use in Ericsson. According to Bjarne Da#cker, head of the Computer
Science Lab at the time, this duality is intentional.

2.Erlang Features

During the time when Joe Armstrong and his colleagues were in the
laboratories of Ericsson, they saw that the development of applications
based on PLEX was not optimal at all, for programming applications
within the hardware systems of Ericsson. For this reason, they began to
search for what could have been an optimal development system, based
on the following specifications:

Distributed

The system had to be distributed in order to balance out its load
across hardware systems. They were looking for a system that could

*0r native code chunks if we use HiPE.

What you should
know about Erlang

launch multiple processes not only on the machine on which it
executed on, but also on other peer machines within its network.
Similar to what in languages like C is provided for by PYM or MPICH
but without the explicit use of any library.

Fault-tolerant

If part of the system had failures and had also to be stopped, it
should not have resulted in the entire system being consequently
stopped as well. In software systems such as PLEX or C, a failure
in the code determines a complete interruption of the program
with all its threads and processes. There are other languages such
as Java, Python or Ruby that handle these errors as exceptions,
affecting only part of the program and not all of its associated
threads. However, in shared memory environments, an error can
leave memory corrupt, potentially affecting other parts of the
program which reference the same memory locations, hence for
such reasons, this option did not provide the required system-wide
safety guarantees.

Scalable

Conventional operating systems had problems in maintaining a high
number of running processes. The telephony systems developed by
Ericsson were (and some, still are) based on having a process for
each incoming call, which controlled the stages of the call and could
trigger events as well as forward them to specific handlers, which in
turn would perform the necessary actions using its own processes.
Therefore, we were looking for a system that could manage from
hundreds of thousands, to millions of processes.

Hot Code Swap

It is very important in the live system environments at Ericsson,
and in most critical systems in production of any kind, that they
never stop, even if updates have to be made. Maintaining such high
uptime of the system despite making live updates, is very important
for both the technical and business units. For this reason, Hot Code
Swap was also added as a feature to Erlang, allowing code and patch
updates to be carried out without necessarily having to stop the
system, and without affecting the rest of the executing code.

Soft real-time

The measurement of events and the underlying factors and
problems of the control of time in computer systems, introduces
another problem and need for synchronization of information,
which in most cases, is usually difficult to solve. In version

What you should
know about Erlang

18 of Erlang an effort was made to rewrite all the aspects
responsible for such time control functions, in order to guarantee
a monotonous real-time system, despite the system time changing
quite frequently. This allowed the software to run with a constant
time frequency between launching of events, while acquiring the
system time just as it was configured in the operating system.

There were also intimate aspects of language design that needed to
be considered in order to avoid another class of problems. Significant
aspects such as:

Unique assighments

As in the mathematical statements, the assignment of a value to a
variable is done only once and, for the rest of the statement, this
variable maintains its immutable value. This guarantees better code
tracking and better error detection.

Simple language

The language must have few elements to lower the learning curve.
Erlang is a simple language to understand and learn, since it has
nothing more than two control structures, excludes loops and
employs techniques such as recursiveness and modularisation to
achieve small and efficient algorithms. Data structures are also
simplified and their power, as in languages such as Prolog or Lisp,
are based on lists.

Oriented to the concurrency

As a kind of new way of programming, this language is oriented
towards concurrency, hence the most intimate routines of the
language itself were designed and prepared to facilitate the
realization of concurrent and distributed programs.

Message passing instead of shared memory

One of the main problems of concurrent programming is the
execution of critical sections of code for accessing portions of
shared memory. This access control ends up being an unavoidable
bottleneck. To simplify and try to eliminate as many errors as
possible, Erlang/OTP is based on message passing, instead of using
known techniques such as traffic lights, or monitors. Message
passing makes a process responsible for the data (a critical section
in memory) which it is handling and only grants a private view
and access of this data, to this process alone. Any other process
looking to execute something in that same critical memory section
belonging to another process, has to first make a request for the data
from the owner process of that memory section. This significantly

What you should
know about Erlang

abstracts the task of developing concurrent programs, by greatly
simplifying the schemes and eliminating the need for explicit
blocks.

Not long ago | found a very interesting presentation about Erlangz, in
which it was added, not only everything that Armstrong said his system
must have in order to develop the solutions optimally, but also the
opposition, why he could not find it in other languages.

At the beginning you have to understand that general purpose refers to
the widespread use of a language to the most common that is usually
developed. Obviously, it is more common to make software for the
administration of a company than an operating system. The general
purpose languages will be optimal for the general development of this
business management software and surely not so much for that operating
system software. PHP for example, is a fabulous web-oriented language
that makes the task much easier for web developers and especially for
layout developers who get into the programming field. But it is disastrous
for the development of stand-alone servers, because it is designed to be
executed and die.

The most widespread languages today, such as C# or Java, present the
problem of lacking low-level elements integrated into their systems that
allow them to develop concurrent applications in an easy way.

3.History of Erlang

Joe Armstrong attended the Erlang Factory conference in London, in
2010, where he explained the history of Erlang's virtual machine. It's the
Erlang/OTP history itself. Using the slides® that he provided for the event,
we are going to conduct a review of the Erlang/OTP history.

Erlang's idea arose from Ericsson's need to narrow down a problem that
had arisen on its AXE platform, which was being developed in PLEX, a
proprietary language. Joe Armstrong along with two colleagues, Elshiewy
and Robert Virding, developed a concurrent logic of programming for
communication channels. This telephony algebra allowed through its
notation to describe the Plain Old Telephone Service (POTS) in only
fifteen rules.

Through the interest of taking this theory into practice they developed
models in Ada, CLU, Smalltalk and Prolog among others. Thus, they
discovered that telephone algebra was processed very quickly in high-
level systems, that is, in Prolog, therefore they began to develop a
deterministic system in it.

2 http://www.it.uu.se/edu/course/homepage/projektDV/ht05/uppsala.pdf
3 http://www.erlang-factory.com/upload/presentations/247/erlang_vm_1.pdf

http://www.it.uu.se/edu/course/homepage/projektDV/ht05/uppsala.pdf
http://www.erlang-factory.com/upload/presentations/247/erlang_vm_1.pdf
http://www.it.uu.se/edu/course/homepage/projektDV/ht05/uppsala.pdf
http://www.erlang-factory.com/upload/presentations/247/erlang_vm_1.pdf

What you should
know about Erlang

The conclusion reached by the team was that, if a problem can be solved
through a series of mathematical equations and by carrying that same
scheme to a program so that the functional scheme is respected and
understood as it was formulated outside the computational environment,
it can be easy to process by people who understand the scheme, even
improve it and adapt it. The tests are actually done at the theoretical
level on the scheme itself, since algorithmically it is easier to test it
with the rules of mathematics than computationally with the number of
combinations that it may have.

Prolog was not a language intended for concurrency, so they decided to
make one that satisfied all their requirements, based on the advantages
they had seen from Prolog to shape their base. Erlang saw the light in
1986, after Joe Armstrong shut himself away to develop the basic idea
as an interpreter on Prolog, with a reduced number of instructions that
quickly grew thanks to its good reception. Basically, the requirements
that were sought to achieve were:

* The processes had to be an intrinsic part of the language, not a library
or development framework.

It should be able to execute from thousands to millions of concurrent
processes and each process be independent from the rest, so that if
one of them was corrupted it would not damage the memory space of
another process. That is, the failure of the processes must be isolated
from the rest of the program.

* It must be able to run uninterruptedly, which means that it is not
necessary to stop its execution in order to update the system code. Hot
swap.

In 1989, the system was beginning to bear fruit, but the problem
arose that its performance was not adequate. It was concluded that the
language was suitable for the programming that was being carried out,
but it would have to be at least 40 times faster.

Mike Williams was responsible for writing the emulator, loader, scheduler
and garbage collector (in C language) while Joe Armstrong wrote the
compiler, the data structures, the memory heap and the stack; on the
other hand, Robert Virding was in charge of writing the libraries. The
developed system was optimized to a level where they managed to
increase its performance by 120 times than the interpreter did in Prolog.

In the 90s, after having managed to develop products of the AXE
range with this language, it was enhanced by adding elements such
as distribution, OTP structure, HiPE, bit syntax or compiling pattern
matching. Erlang was starting to be a great piece of software, but it had
several problems so that it could be widely adopted by the community of
programmers. Unfortunately for the development of Erlang, that period

What you should
know about Erlang

was also the decade of Java and Ericsson decided to focus on globally
used languages, so Ericsson forbade further development of Erlang.

Note

HiPE is the acronym for High Performance Erlang which is the
name of a research group on Erlang formed at the University of
Uppsala in 1998. The group developed a native code compiler so
that Erlang's virtual machine (BEAM) does not have to interpret
certain parts of the code if they are already in machine language
thus improving their performance.

The imposition of not writing code in Erlang was forgotten over time and
the community of Erlang programmers began to grow outside of Ericsson.
The OTP team kept developing and supporting Erlang which, in turn,
continued as a source of assistance for the HiPE project and applications
such as EDoc or Dialyzer.

Prior to 2010, Erlang added capacity for SMP and more recently for multi-
core. The 2010 revision of the BEAM emulator runs with a performance
300 times higher than that of the C emulator version, making it 36,000
times faster than the original interpreted in Prolog. More and more
sectors are echoing the capabilities of Erlang and more and more
companies have started developments on this platform so it is predicted
that the use of this language will continue to rise.

4.Developments with Erlang/OTP

The developments in Erlang are increasingly visible to everyone
especially in the environment in which Erlang moves: the concurrence
and the massive management of events or elements without collapsing
or falling. This is an essential and decisive point for companies that have
their niche business on the internet and that have gone from selling
products to providing services through the network.

In this section we will see the influence of Erlang and how it is settling in
the business environment and free software communities as well as the
type of implementations that are carried out in both areas.

4.1.Business Sector

Due to the intrinsic advantages of the language and its environment, the
creation of real MVC models for web development has become evident.

Necessary items such as ChicagoBoss or Nitrogen deserve mention,
whose use can be seen in companies such as the Spanish Tractis®.

“Unfortunately this company closed last April 2018.

What you should
know about Erlang

It is also known the case of Facebook that Erlang uses in its chat
implementation to support the messages of its 70 million users. Like
Tuenti, which also used this technology.

The English company Demonware®, specialized in the development and
maintenance of infrastructure and server applications for online video
games, began using Erlang to support the high number of players in
famous video games such as Call of Duty.

Several companies in the entertainment sector that make mobile
applications have also joined the development of their server
applications in Erlang/OTP. An example of this type of companies is
Wooga".

WhatsApp, the currently most relevant application for sending messages
between smartphones, uses systems developed in Erlang at the server
level and starred in the period of greatest interest on Erlang after its
purchase by Facebook in 2014.

One of the archetype compames of Erlang has been Kreditor, which
changed its name to Klarna AB’. This company is dedicated to online
payments. This company has the largest staff of programmers in Erlang
in the world.

Since the emergence of the Cloud model, more and more software
companies are providing online services instead of selling products,
which is why they face widespread use by their users, and even denial of
service attacks. These scenarios together with quite heavy services and
not very powerful infrastructures make tools like Erlang more and more
necessary.

On the website of Erlang Companies8 you can see a curated list of
companies that use Erlang.

4.2 .EEF: Erlang Ecosystem Foundation

The Erlang Ecosystem Foundation is a new non-profit organization
dedicated to furthering the state of the art for Erlang, Elixir, LFE, and other
technologies based on the BEAM. Their goal is to increase the adoption
of this sophisticated platform among forward-thinking organizations.

With member-supported Working Groups actively contributing to
libraries, tools, and documentation used regularly by individuals and
companies relying on the stability and versatility of the ecosystem. The
EEF actively invest in critical pieces of technical infrastructure to support

5 http //www.erlang-factory.com/conference/London201 1/spea|<ers/MalcolmDowse
http //es.slideshare.net/wooga/erlang-the-big-switch-in-social-games

7 - https://klarna.com/
https //erlang-companies.org/

http://www.erlang-factory.com/conference/London2011/speakers/MalcolmDowse
http://es.slideshare.net/wooga/erlang-the-big-switch-in-social-games
https://klarna.com/
https://erlang-companies.org/
http://www.erlang-factory.com/conference/London2011/speakers/MalcolmDowse
http://es.slideshare.net/wooga/erlang-the-big-switch-in-social-games
https://klarna.com/
https://erlang-companies.org/

What you should
know about Erlang

its users in their efforts to build the next generation of advanced, reliable,
realtime applications.

You can read more about the EFF in their website’.

4.3.Free Software

There are many samples of great magnitude projects of very diverse
nature created on the basis of Erlang. Most of them focus on
environments in which great advantage is taken of the management of
concurrency and distribution that the Erlang system performs.

Note

@ Taking advantage of the fact that this list of free software
developed in Erlang has been started, the page corresponding to
Erlang in Wikipedia has been structured and expanded, so that at

this time it will be more extensive than the present list in these
pages.

The following list is shown as an example:
Distributed Databases
Apache CouchDB™°

Is a document based database accessed through HTTP and
using the REST format. It is one of the projects that are hosted
by the Apache Foundation.

. 11
Riak

A NoSQL database inspired by Dynamo (Amazon's NoSQL
database). It is used by companies such as Mozilla and
Comcast. It is based on an easy scale distribution and
completely fault tolerant.

SimpleDB™*

As indicated by its own website is a non-relational data store
with flexible high availability that downloads the work of
administration of the databases. That is, a NoSQL system that
allows hot swapping of the data schema in an easy way,
performs self-indexing and allows the distribution of the data.
It was developed by Amazon.

9 https://erlef.org/
% http://couchdb.apache.org
! http://www.riak.info/
2 https://aws.amazon.com/simpledb/

https://erlef.org/
http://couchdb.apache.org
http://www.riak.info/
https://aws.amazon.com/simpledb/
https://erlef.org/
http://couchdb.apache.org
http://www.riak.info/
https://aws.amazon.com/simpledb/

What you should
know about Erlang

Couchbase™’

Is a NoSQL database for mission critical systems. With
replication, monitoring, fault tolerant and compatible with
Memcached.

Web Servers
Yaws'*

As a complete web server, with the possibility of installing and
configuring for it, it only exists Yaws or at least it is the best
known in the community. Its configuration is done in a similar
way to Apache. It has some quite powerful scripts that run at
the server level and allows the use of CGl and FastCGl.

Web Frameworks
ErlyWeb15

Has not been modified by Yariv for a few years so its use has
declined. Yariv himself used it to make a twitter clone and was
initially used for the chat interface for Facebook. Last change
in the code was in 2008.

BeepBeep16

Is a framework inspired by Rails and Merb although without
database integration. Last change in the code was in 2008 and
the author archived the repository.

Nitrogen'’

Is a framework designed to facilitate the construction of web
interfaces. It allows us to add HTML code in a simple way and
link it with JavaScript with functionality without the need to
write a single line of JavaScript code. Last release was in 2015.

N20%®

Is a modification of Nitrogen designed to write code on the
web asynchronously with the use of websockets. It is becoming
famous for its performance and fluidity in the information load.

3 http://www.couchbase.com/

4 http://yaws.hyber.org/

5 https://github.com/yariv/erlyweb

16 https://github.com/davebryson/beepbeep/
7 http://nitrogenproject.com/

8 https://synrc.com/apps/n20/

10

http://www.couchbase.com/
http://yaws.hyber.org/
https://github.com/yariv/erlyweb
https://github.com/davebryson/beepbeep/
http://nitrogenproject.com/
https://synrc.com/apps/n2o/
http://www.couchbase.com/
http://yaws.hyber.org/
https://github.com/yariv/erlyweb
https://github.com/davebryson/beepbeep/
http://nitrogenproject.com/
https://synrc.com/apps/n2o/

What you should
know about Erlang

ChicagoBoss™®

Perhaps the most active and complete web framework for
Erlang in comparison with the others. It has implementation of
views, templates (ErlyDTL), definition of routes, controllers and
models through an ORMZ® system.

CMS (Content Management System)
Zotonic??

CMS system that allows the design of web pages in a simple
way through the programming of the views (DTL) and the
management of multimedia content, text and other aspects
through the administration interface.

Chat
ejabberd22

XMPP server widely used in the Jabber world. This server
allows the scaling and management of multi-domains. It is
used on sites such as BBC Radio LiveText, Nokia Ovi, KDE Talk,
Facebook Chat, Tuenti Chat, LiveJournal Talk, etc.

MongooseIM23

Is an ejabberd fork that has been gaining great popularity as it
is powered by Erlang Solutions. Its main rewrite was to double
its capacity by using binary lists instead of character lists. In
recent years the system has been improving a lot in many
aspects.

Message Queues
RabbitMQ**

A message queuing server widely used in web environment
systems with a need for this type of systems for websocket,
AJAX or similar connections in which an asynchronous
behavior is required over synchronous connections. It was
acquired by SpringSource, a subsidiary of VMWare in April
2010.

9 http://www.chicagoboss.org/

290bject Relational Mapping, system used to perform the transformation between objects and tables in
order to use directly the objects in code so that the information they handle is stored in a table in the
database.

2L http://zotonic.com/

22 http://www.ejabberd.im/

23 https://www.erlang-solutions.com/products/mongooseim.html

24 http://www.rabbitmq.com/

11

http://www.chicagoboss.org/
http://zotonic.com/
http://www.ejabberd.im/
https://www.erlang-solutions.com/products/mongooseim.html
http://www.rabbitmq.com/
http://www.chicagoboss.org/
http://zotonic.com/
http://www.ejabberd.im/
https://www.erlang-solutions.com/products/mongooseim.html
http://www.rabbitmq.com/

What you should
know about Erlang

VerneMQ25

Is @ message queue server like RabbitMQ but mainly focused
on MQTT. According to its creators, it is a bet to obtain a
reliable system in the Internet of Things (loT), which can serve
as a monitoring system for storing statistics, mobile messaging,
chat system for groups, etc.

5.Erlang and the Concurrency

One of the best proofs that Erlang/OTP works is to show the comparisons
that companies like Demonware or people like Joe Armstrong have
made. Systems submitted to a test bench to check how they perform
in real production or how they could perform in controlled testing
environments.

| am going to start by talking about the case of the company Demonware,
which | mentioned before in the section about Erlang's use in the
business sector, but this time | will detail it with data provided by the
company through Malcolm Dowse in the Erlang Factory of London of
2011.

| will continue with a more recent case of the company Riot Games with
the production of its servers to support the game League of Legend526.

Later we will see the test bench that Joe Armstrong made about a service
using a couple of Apache and Yaws configurations.

5.1.The case of Demonware

At the conference of Erlang Factory in London, in 2011, Malcolm Dowse,
of the company Demonware (from Dublin), gave a presentation entitled
Erlang and First-Person Shooters. Tens of millions of Call of Duty Black
Ops fans tested Erlang's load.

Demonware is the company that works with Activision and Blizzard giving
support to the XBox and PlayStation multi-player game servers. The
company was established in 2003 and from that time until 2007 they
kept modifying their technology to optimize their servers, until they
reached Erlang.

In 2005 they built their infrastructure in C++ and MySQL. Its concurrence
of users did not exceed 80 players, fortunately they didn't have to surpass
that figure. In addition, the code crashed frequently, which was a serious
problem.

2

5 .
I https://verne.mq/

http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-
players-it-t.html

12

https://verne.mq/
http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-players-it-t.html
https://verne.mq/
http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-players-it-t.html
http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-players-it-t.html

What you should
know about Erlang

In 2006 the entire business logic was rewritten in Python. It was still
maintained internally C++ so the code had become difficult to maintain.

Finally, in 2007, the code of the C++ servers was rewritten to Erlang.
It was about 4 months of development with which they got to fix the
system so it no longer crashed. They also got to improve and facilitate
the configuration of the system (in the C++ version it was necessary to
restart to reconfigure, which meant disconnecting all the players). It also
provided better log system and administration tools and it became easier
to develop new features in many fewer lines of code. By then they had
reached 20 thousand concurrent users.

Call of Duty 4 arrived at the end of 2007, which meant a constant
growth of users during 5 continuous months. It went from 20 thousand
to 2.5 million users. From 500 to 50 thousand requests per second. The
company had to expand its nodes from 50 to 1850 servers across several
data centers. In the words of Malcolm: it was a crisis for the company, we
had to grow, without the change to Erlang the crisis could have been a
disaster.

Demonware is one of the companies that has seen the advantages of
Erlang. The way in which it implements concurrent programming and the
great scalability. Thanks to these factors, they have been able to keep
up with the service of the most used and played online games of recent
times.

5.2.The case of League of Legends

The Riot Games company was ready for the launch of its video game
League of Legends. Keeping in mind the current requirements of any
game in which it is necessary to have a chat system and group chat they
decided to follow the steps of WhatsApp using ejabberd.

Like WhatsApp, they had to modify ejabberd to avoid bottlenecks and
implement the use of specific developments such as the Riak CRDTs*’

The data shown by the company are quite impressive. Its chat system
supports and manages 70 million players. Doing some math based on
the numbers that they themselves presented in a highscalability.com
article?® , they have 67 million unique players each month, 27 million
players every day, 7,5 million concurrent players, a billion routed events
per server / day using only 20 -30% of CPU and RAM, 11 thousand
messages / second, a few hundred chat servers distributed around the
world and managed by only 3 people and finally 99% of uptime.

Z7CRDT stays for Conflict-free Replicated Data Type
http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-
players-it-t.html

13

http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-players-it-t.html
http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-players-it-t.html
http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-players-it-t.html
http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-players-it-t.html

What you should
know about Erlang

5.3.Yaws vs. Apache

It is already well known the famous graph29 about the comparison that
made Joe Armstrong and Ali Ghodsi between Apache and Yaws. The test
is quite easy, on one side, a server, on the other, a client for measurement
and 14 clients to generate load.

The proposed test was to generate a Denial of Service (DoS) attack, which
made web servers, after receiving an excessive number of requests,
degrade their service until they stopped giving it. It is well known that
this happens with all systems, since the resources of a server are finite.
However, due to its programming, things like the ones shown in the
graphic can happen:

300 T T T T T

) 'plot-gaw‘s—disk-long‘ﬁ ' ——
‘plotjapache-ZEOthr-dlsk !

800 13 Phe64prog250the!

700

£00

500

400

300 |

200 |

100 F

0 " 2 2 L L L " "

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

In dark gray (marking the point with a circle and occupying the upper
lines of the graph) you can see the Yaws response in KB/s scale (Y axis)
versus load (X axis). The lines that are cut from the 4 thousand requests
correspond to two different configurations of Apache (in black and light

gray).

In this case, something similar to that seen with Demonware in the
previous section happens, Apache cannot process more than 4000
simultaneous requests, partly due to its integration intimately linked
to the operating system, which limits it. However, Yaws remains with
the same performance until reaching over 80 thousand simultaneous
requests.

29 http://www.sics.se/~joe/apachevsyaws.html

14

http://www.sics.se/~joe/apachevsyaws.html
http://www.sics.se/~joe/apachevsyaws.html

What you should
know about Erlang

Erlang is built with its own process management and detached from
the operating system. It is usually slower than the one provided by the
operating system, but without doubt the scalability and performance that
can be achieved help to keep the balance. Each Erlang node can manage
a total of about 2 million processes.

15

	Erlang/OTP
	Table of Contents
	Introduction
	1. About the author
	2. About this book
	3. The Aims and Objetives of the Book
	4. Who should read this book?
	5. Structure of the Collection
	6. Nomenclature used
	7. Acknowledgements
	8. More Information on the Webpage

	Chapter 1. What you should know about Erlang
	1. What is Erlang?
	2. Erlang Features
	3. History of Erlang
	4. Developments with Erlang/OTP
	4.1. Business Sector
	4.2. EEF: Erlang Ecosystem Foundation
	4.3. Free Software

	5. Erlang and the Concurrency
	5.1. The case of Demonware
	5.2. The case of League of Legends
	5.3. Yaws vs. Apache

	Chapter 2. The language
	1. Data Types
	1.1. Atoms
	1.2. Integer and Real Numbers
	1.3. Variables
	1.4. Lists
	1.4.1. What can we do with a list?
	1.4.2. Strings
	1.4.3. Binary lists
	1.4.4. Working with Bits

	1.5. Tuples
	1.5.1. Dynamic modification of tuples
	1.5.2. Property list

	1.6. Records
	1.7. Maps
	1.8. Data conversion

	2. Printing on screen

	Chapter 3. Real Time
	1. Date and Time data types
	2. Monotonic time
	3. The Erlang time and the Operating System time
	4. Before version 18
	5. Since version 18
	6. Time tunnels
	7. How to keep the code safe?

	Chapter 4. Expressions, Structures and Exceptions.
	1. Expressions
	1.1. Arithmetic Expressions
	1.2. Logical Expressions
	1.3. Operator Precedence

	2. Flow Control Structures
	2.1. Pattern Matching
	2.2. Case structure
	2.3. The if Structure
	2.4. List Comprehensions
	2.5. Binary comprehensions
	2.6. Functional blocks

	3. Exceptions
	3.1. Exception handling: catch
	3.2. Throwing an exception
	3.3. The try...catch structure
	3.4. Most common execution errors

	Chapter 5. Functions and Modules
	1. Code organization
	2. Scope of functions
	3. Polymorphism and match
	4. Guards
	5. Closures
	6. Functional programming
	7. Recursion
	7.1. Mergesort
	7.2. Quicksort

	8. Integrated functions (BIFs)

	Chapter 6. Processes
	1. Anatomy of a process
	2. Advantages and disadvantages
	3. Spawning processes
	4. Naming Processes
	5. Communication between Processes
	6. Linked Processes
	7. Process Monitoring
	8. Code reload
	9. Process Management
	10. Erlang Nodes
	11. Hidden Nodes
	12. Remote Processes
	13. Local or Global Processes
	14. RPC: Remote Procedure Call
	15. Process Dictionary

	Chapter 7. ETS, DETS and Files
	1. ETS
	1.1. Types of Tables
	1.2. Access to ETS
	1.3. Creation of an ETS
	1.4. Reading and Writing in ETS
	1.5. Match: Advanced search
	1.6. Deleting tuples
	1.7. ETS to File

	2. DETS
	2.1. Types of tables
	2.2. Create or open a DETS
	2.3. Handling of the DETS
	2.4. From ETS to DETS and vice versa

	3. Files
	3.1. Opening and closing files
	3.2. Reading Text Files
	3.3. Writing Text Files
	3.4. Reading Binary Files
	3.5. Writing Binary Files
	3.6. Random access Files
	3.7. Batch Readings and Writings

	4. File Management
	4.1. File Name
	4.2. Copy, Move and Delete Files
	4.3. Permissions, Owners and Groups

	5. Directory Management
	5.1. Working Directory
	5.2. Creation and Removal of Directories
	5.3. Content of the Directories

	Chapter 8. Communications
	1. Basic concepts for Networks
	1.1. IP Addresses
	1.2. Ports

	2. UDP Client and Server
	3. TCP Client and Server
	4. Concurrent TCP Server
	5. Advantages of inet

	Chapter 9. Erlang Ecosystem
	1. Starting a Project
	1.1. Installing rebar3
	1.2. Writing the Code

	2. Compile and Clean
	3. Creating and running an application
	4. Dependencies
	5. Development Shell
	6. Release and Deploy
	7. Hot Upgrade
	8. Scripting in Erlang
	9. The way to OTP

	Appendixes
	Appendix A. Erlang Installation
	1. Windows Installation
	2. GNU/Linux Installation
	2.1. From Binary Packages
	2.2. Compiling the Source Code

	3. Other Systems

	Appendix B. The Command-Line
	1. Records
	2. Modules
	3. Variables
	4. History
	5. Processes
	6. Working directory
	7. JCL Mode
	8. Exit from the shell

	Appendix C. Graphic Tools
	1. Observer
	2. Debugger

